Thomas Boyer-Kassem

Philosophy Department, MAPP, Université de Poitiers & Institut Universitaire de France

"Epistemic Values and Their Scales" — Poitiers, 18 November 2025

The general problem (cf. Kuhn 1977)

- **Several** competing scientific **theories**.
- Various epistemic values (accuracy, simplicity, . . .).
- How choose the **best theory**?

Thomas S. Kuhn

The Essential Tension

Selected Studies in Scientific Tradition and Change

13

Objectivity, Value Judgment, and Theory Choice

Difference with Kuhn

- I consider the case of **one** agent already enough work ;-).
- The aggregation is between several value judgments,
 not between several agents' judgments (or see a w.p. of mine)
- ⇒ not "voters". but "values".

The literature

- Okasha (2011, 2015), Morreau (2014, 2025): is it analogous to a standard social choice problem + Arrow's impossibility theorem?
- They start by assuming **rankings**. Kuhn (1977) too. E.g. Theory A is the first on Simplicity, the third on Consistency
- But rankings are not very informative:
 - Being **first** may not mean being **excellent** or even good.
 - 2nd and 3rd may be very **close**, or very **far**...

Another approach

- Use qualitative judgments.
 - E.g. Theory A is **Excellent** on Simplicity, **Good** on Consistency
- The differences: more informative! and escape Arrow!

An example (Kuhn 1977): how assess...?

Ptolemy. Accuracy: Good. Simplicity: Fair. Consistency: Good.

Copernicus. Accuracy: Good. Simplicity: Very Good. Consistency: Bad.

Difficulties in aggregating value judgments (Kuhn 1977, p. 322)

- Values are imprecise (varying interp. depending on the person)
 only one agent ⇒ not my problem here ✓
- They conflict with each other.
 Scientists can "differ about the[ir] relative weights".
 But how combine weights and qualitative judgments?
 Unspecified by Kuhn! X

⇒ my problem:

How choose the best theory using qualitative epistemic value judgments? (normative *vs* descriptive)

- Formal framework
- 2 An axiomatic approach
- 3 Majority Judgment the epistemic version
- Objection & answer
- Conclusion

- Formal framework
- 2 An axiomatic approach
- Majority Judgment the epistemic version
- 4 Objection & answer
- Conclusion

Hypothesis: Competing Theories

There exists a finite set of **scientific theories**.

E.g. Ptolemy's theory and Copernicus's theory.

Hypothesis: Epistemic Values

There exists a finite set of **epistemic values**, each with a weight (weights sum to 1).

E.g. {Accuracy, Simplicity, Consistency, Scope, Fruitfulness}, with equal weights.

Hypothesis: Ordinal Grading

There exists a finite set of **grades** arranged as an **ordinal scale** with a total order (e.g. **Excellent**, **Very Good**, **Good**, **Fair**, **Bad**...).

The agent **grades** each theory with this scale.

E.g. General Relativity. Accuracy: Excellent, Simplicity: Very Good...

Ordinal Grading — comments

- Not hard to give an ordinal grade.
- Assume: not all values have probabilities (or ratio assessments).
 E.g. fruitfulness ordinal only (Okasha 2011)
- Not a problem if some values receive a finer assessment than grades.

- Formal framework
- 2 An axiomatic approach
- Majority Judgment the epistemic version
- Objection & answer
- Conclusion

The axiomatic approach

- We have to aggregate several qualitative (ordinal) value judgments.
- What does it mean for an aggregation rule to be good?
- The axiomatic approach:
 - axioms (= theoretical desiderata) are formulated,
 - one checks whether aggregation rules satisfy them.
- Here, epistemic axioms (not political ones).
 I adapt those by Balinski and Laraki (2020).

Which epistemic axioms?

- Axiome 1 (Grades) The aggregation function takes as input the grades given to the theories (and not a ranking).
 Natural given the hypothesis Ordinal Grading.
- Axiom 2 (Domain) Grades may be assigned from the scale without restriction.
 - No a priori constraint on grades, it is possible to use the full scale. (Objection: Morreau 2015, see below)
- **Axiom 3 (Anonymity)** Permuting the index of the values does not change the outcome.
 - There is nothing special with being Value #1 (but weights matter). With Axiom 1: which value gave which grade does not matter, only the set of grades does.
- Axiom 4 (Neutrality) Permuting the index of the theories does not change the outcome.
 - There is nothing special with being Theory #1.

Which epistemic axioms? (cont'd)

- Axiom 5 (Monotonicity) If A ≥ B, and one of A's grades is increased, then A > B. Better epistemic evaluations should matter.
- Axiom 6 (Completeness) For any pair (A, B), either A ≥ B or B ≥ A.
 A ranking has to be delivered for any two theories.
- Axiom 7 (Transitivity) If $A \succeq B$ and $B \succeq C$, then $A \succeq C$. It may be violated with rankings as inputs (Condorcet paradox).
- Axiom 8 (Independence of Irrelevant Alternatives) If $A \succeq B$, this remains true if other theories are added or removed.

Otherwise: a weird story

The scientist assesses her views on A and B: the best theory is B. Now a colleague tells her: "Hey, you should also consider theory C." So the scientist thinks again, and concludes: the best theory is now A!

- Formal framework
- 2 An axiomatic approach
- 3 Majority Judgment the epistemic version
- Objection & answer
- Conclusion

There exist an **infinity** of aggregation functions which satisfy Axioms 1–8.

Note: asking for *grades* instead of *rankings* open huge possibilities (compare with Arrow 1951!).

Example: "point-summing methods"

Each grade is associated with a number.

Numbers received by a theory are summed up (or averaged).

(e.g. approval voting, Likert scales)

Drawbacks

- No meaning, no justification for the numbers. Could be re-scaled.
- Large sensitivity to **errors**.

The solution: Majority Judgment

Theorem (Balinski & Laraki 2007, 2020)

The only aggregation function which satisfies the above-mentioned axioms, plus an error-minimization axiom, is Majority Judgment.

Introducing Majority Judgment

- Each theory receives a grade for each value. (cf. hyp. Ordinal Grading).
- For each theory, received grades are ranked by decreasing order.
 - P: Excellent, Excellent, Very Good, Good, Fair
- The middle (median) grade is the majority grade
 - P: Excellent, Excellent, Very Good, Good, Fair
 - "a majority of voters think [the option] deserves at least this grade and another majority thinks it deserves at most this grade." (Balinski Laraki 2012)
- Options are ranked according to their majority grade.
 - 1: Very Good, Very Good, Very Good, Fair
 - 2: Excellent, Very Good, Good, Good

MJ – What if majority grades are the same?

• One compares grades just around the one in the middle.

```
A: Excellent, Very Good, Good, Good, Fair
B: Excellent, Very Good, Good, Good, Good
```

 If they are the same, one compares the grades which are still farther from the middle.

```
A: Excellent , Very Good, Good, Good, Fair
B: Excellent , Very Good, Good, Good
```

An option is ranked **above**:

• Either if it has **higher** grades

```
A: Excellent, Excellent, Good, Good, Good B: Excellent, Very Good, Good, Good, Fair \Rightarrow A \succ B
```

• Or if its grades are closer

A: Excellent, Excellent, Very Good, Fair, Fair

B: Excellent, Very Good, Very Good, Good, Good
$$\Rightarrow B \succ A$$
.

Noticeable properties of Majority Judgment

 What is obtained is more than a mere ranking, each option is evaluated with nuance.

```
Ex: being 1^{st} with majority grade "Very Good" \neq being 1^{st} with "Fair"
```

- For each value, the question is "How is each theory graded?"
 neither "Which theory is the most....?"
 nor "How are theories ranked?"
- Asking for grades provides richer information.

Refinements

 One may give a distribution of grades instead of just one (Laraki and Varloot, 2022).

E.g.: Simplicity: 80 % Very Good and 20 % Fair.

Kuhn's example, now with grades and Majority Judgment

Ptolemy. Accuracy: Good. Simplicity: Fair. Consistency: Good.

Copernicus. Accuracy: Good. Simplicity: Very Good. Consistency: Bad.

Grades received:

Ptolemy. Good, Good, Fair

Copernicus. Very Good, Good, Bad

Same. Look around.

Ptolemy. Good, Good, Fair

Copernicus. Very Good, Good, Bad

 \Rightarrow Ptolemy wins!

Suppose now Simplicity's weight is doubled.

Ptolemy. Good, Good, Fair, Fair

Copernicus. Very Good, Very Good, Good, Bad

⇒ Copernicus wins!

- Formal framework
- 2 An axiomatic approach
- 3 Majority Judgment the epistemic version
- 4 Objection & answer
- Conclusion

An Objection about the Domain axiom

Objection (Morreau 2015)

- Recall **Axiom 2 (Domain)** Grades may be assigned from the scale without restriction (i.e. the rule gives an output for any input).
- Arrow's theorem assumes that the sets of theories and of criteria are given.
- For a given set of theories, and a given meaning of, say, simplicity, the grades for Simplicity are fixed, or rigid. (there are some true grades)
- There is no sense in requiring them to be able to change.
- Hence, Arrow's theorem cannot take off (Morreau 2015).
- (here) Similarly, one may argue that Balinski's and Laraki's theorem cannot apply to theory choice.

An Objection about the Domain axiom

Answer #1 — not impossibility

- The axiom is not needed here in the same way: it is a possibility or uniqueness theorem.
- If the axiom is too demanding and should be dropped, the theorem just does **not** establish the **uniqueness** of MJ anymore (there may be **other** rules than MJ).
- This does **not** show that MJ **is not suitable**.

Answer #2 — a pragmatic argument

- Unlike Arrow's original framework, consider a family of application cases.
- We want the same rule to apply to all these cases.
 (We may not know which case we are in beforehand.)
- Even if grades are fixed in a given case,
 they are not fixed within this family of cases.
- Hence it makes sense to require that grades are unrestricted.

- Formal framework
- 2 An axiomatic approach
- 3 Majority Judgment the epistemic version
- Objection & answer
- Conclusion

Summing up

- When choosing between competing theories, attributing an ordinal grade for each value is more informative than a ranking.
- Considering a list of desirable **epistemic axioms**, we arrive at **Majority Judgment** (not just for politics!).
- The best scientific theory should be individually selected with MJ!
 We now know how to combine weights and qualitative judgments Kuhn has been completed.
- (I assumed here weights are given not against Kuhn's thesis that there is no unique algorithm)

New research paths

- This suggests a general framework for aggregating ordinal judgments with several values or criteria:
 - to choose between scientific hypotheses, models, explanations...
 - to analyze different dimensions of a single value
 - to choose between research projects, articles for a prize...
- Future work: consider several agents, and aggregate all the views (agents × values × theories).
 Does not commute

References

Balinski & Laraki (2007), "A theory of measuring, electing and ranking," *Proceeding of the National Academy of Sciences*, 104(21): 8720-8725.

Balinski & Laraki (2010), Majority Judgement: Measuring, Ranking and Electing, MIT Press. Balinski & Laraki (2020), "Majority Judgment vs Majority Rule", Soc. Choice & Welf. 54:429 Kuhn (1977), "Objectivity, Value Judgment and Theory Choice". In The Essential Tension, p.320-39. University of Chicago Press

Laraki & Varloot (2022), "Level-Strategypoof Belief Aggregation and Application to Majority Judgment under Uncertainty". *Proceedings of the 23rd ACM Conference*. p. 335-369.

Morreau (2014), "Mr. Fit, Mr. Simplicity and Mr. Scope: From Social Choice to Theory Choice", *Erkenntnis* 79(6): 1253-1268.

Morreau (2015), "Theory choice and social choice: Kuhn vindicated." *Mind* 124(493), 239-262. Okasha (2011), "Theory choice and social choice: Kuhn versus Arrow." *Mind* 120:83–115.

Okasha (2015), "On Arrow's theorem and scientific rationality: Reply to Morreau and Stegenga." *Mind*, 124(493), 279-294.

Slides & working paper:

https://thomasboyerkassem.yolasite.com/

